Extensions 1→N→G→Q→1 with N=C33 and Q=Dic3

Direct product G=N×Q with N=C33 and Q=Dic3
dρLabelID
Dic3×C33108Dic3xC3^3324,155

Semidirect products G=N:Q with N=C33 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C331Dic3 = He3⋊C12φ: Dic3/C2S3 ⊆ Aut C33363C3^3:1Dic3324,13
C332Dic3 = C33⋊Dic3φ: Dic3/C2S3 ⊆ Aut C33366-C3^3:2Dic3324,22
C333Dic3 = C3×C32⋊C12φ: Dic3/C2S3 ⊆ Aut C33366C3^3:3Dic3324,92
C334Dic3 = C334C12φ: Dic3/C2S3 ⊆ Aut C33108C3^3:4Dic3324,98
C335Dic3 = C3×He33C4φ: Dic3/C2S3 ⊆ Aut C33108C3^3:5Dic3324,99
C336Dic3 = He36Dic3φ: Dic3/C2S3 ⊆ Aut C33366C3^3:6Dic3324,104
C337Dic3 = C3×C33⋊C4φ: Dic3/C3C4 ⊆ Aut C33124C3^3:7Dic3324,162
C338Dic3 = C34⋊C4φ: Dic3/C3C4 ⊆ Aut C3336C3^3:8Dic3324,163
C339Dic3 = C32×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3336C3^3:9Dic3324,156
C3310Dic3 = C3×C335C4φ: Dic3/C6C2 ⊆ Aut C33108C3^3:10Dic3324,157
C3311Dic3 = C348C4φ: Dic3/C6C2 ⊆ Aut C33324C3^3:11Dic3324,158

Non-split extensions G=N.Q with N=C33 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
C33.1Dic3 = C32⋊Dic9φ: Dic3/C2S3 ⊆ Aut C33108C3^3.1Dic3324,8
C33.2Dic3 = C322Dic9φ: Dic3/C2S3 ⊆ Aut C33366C3^3.2Dic3324,20
C33.3Dic3 = C3×C9⋊C12φ: Dic3/C2S3 ⊆ Aut C33366C3^3.3Dic3324,94
C33.4Dic3 = C33.Dic3φ: Dic3/C2S3 ⊆ Aut C33108C3^3.4Dic3324,100
C33.5Dic3 = C323Dic9φ: Dic3/C3C4 ⊆ Aut C33364C3^3.5Dic3324,112
C33.6Dic3 = C32×Dic9φ: Dic3/C6C2 ⊆ Aut C33108C3^3.6Dic3324,90
C33.7Dic3 = C3×C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C33108C3^3.7Dic3324,96
C33.8Dic3 = C325Dic9φ: Dic3/C6C2 ⊆ Aut C33324C3^3.8Dic3324,103

׿
×
𝔽